Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation
نویسندگان
چکیده
Practical aspects of likelihood-based inference and forecasting of series with long memory are considered, based on the arfima(p; d; q) model with deterministic regressors. Sampling characteristics of approximate and exact first-order asymptotic methods are compared. The analysis is extended using modified profile likelihood analysis, which is a higher-order asymptotic method suggested by Cox and Reid (1987). The relevance of the differences between the methods is investigated for models and forecasts of monthly core consumer price inflation in the US and quarterly overall consumer price inflation in the UK. Copyright c ©2004 by the authors. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, bepress, which has been given certain exclusive rights by the author. ∗Jurgen A. Doornik Nuffield College University of Oxford Oxford OX1 1NF United Kingdom e-mail: [email protected]. Marius Ooms Department of Economics Free University of Amsterdam 1081 HV Amsterdam The Netherlands e-mail: [email protected]
منابع مشابه
Inference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation
متن کامل
Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP
       This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملInference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK in ation
We discuss computational aspects of likelihood-based speci cation, estimation, inference, and forecasting of possibly nonstationary series with long memory. We use the arfima(p; d; q) model with deterministic regressors and we compare sampling characteristics of approximate and exact rst-order asymptotic methods. We extend the analysis using a higher-order asymptotic method, suggested by Cox an...
متن کاملModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004